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Abstract

A general class of 3D perfectly matched, i.e., reflectionless, Cartesian embeddings (perfectly matched layers in the three
coordinate directions) is analyzed with the aid of a combined time-domain Green’s function technique and a time-domain,
causality-preserving, Cartesian coordinate stretching procedure. It is shown that, for an unbounded embedding of the spec-
ified class, the wavefield is, in any 3-rectangular computational solution domain, reproduced exactly. The spurious reflec-
tion caused by a (computationally necessary) truncation of the embedding is analyzed as a function of layer thicknesses
and their coordinate stretching relaxation functions. A time-domain uniqueness proof for the solution to the truncated
embedding problem is provided and a numerical illustration is given for a test case with known analytical solution. For
such cases, the pure space-time discretization errors can be separated from the disturbance caused by the spurious reflec-
tion. For the second-order coordinate stretched wave equation an equivalent system of first-order equations is presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The computation of transient wavefields in unbounded space takes typically place by discretizing the rele-
vant space-time partial differential equations in some solution domain of bounded support, in conjunction with
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a computational procedure that somehow mimicks a reflectionless radiation into the solution domain’s embed-

ding. Three different methods to account for the latter can be distinguished. In the first, the dimensions of the
solution domain are chosen so large that the generated wave motion has, in the time window of computation,
not yet reached the boundary surface. In this case the wave function values can, at the boundary of the solu-
tion domain, be put equal to zero. This method can, in most practical cases, only be used in time windows of
sufficiently small duration. In the second method, so-called absorbing boundary conditions are invoked on the
boundary of the solution domain. Such absorbing boundary conditions fall into two categories: exact ones
and approximate ones. The exact ones are based on some integral or series representation of the wavefield
in the embedding, the integrands or coefficients in which are interrelated to the wavefield’s boundary values.
Conditions of this type are of a non-local nature and destroy the sparseness of the system’s matrix associated
with the discretization of the differential operator involved. Absorbing boundary conditions of a local nature
(in which the sparseness of the system’s matrix is preserved) do exist, but they are of an approximate nature
and, as a rule, they do not perform well off the normal to, and in the neighborhood of, the boundaries on
which they are invoked [22,23]. A third method aims to construct differential equations that coincide with
the equations that describe the wave motion under consideration in the solution domain, but that enforce
an excess time delay and/or an excess decay of their solution away from the boundary into the embedding,
without disturbing the solution in the solution domain. Such artificial embeddings are denoted as perfectly

matched or reflectionless. The present paper shows how to construct analytically, for a solution domain in
the shape of a 3-rectangle, a rather general class of such space-time 3D, Cartesian, perfectly matched embed-
dings. The basic ingredient in it is a convolutional, causality preserving, time-domain Cartesian coordinate
stretching procedure, a special case of which (similar to the sub-class considered in Sections 7 and 9 of the
present paper) has also been discussed by Chew and Weedon [16, Eqs. (46)–(51)] (see also [14]) and Rappaport
[43,42]. Chew and Weedon start from the frequency-domain counterpart in an electromagnetic setting and
arrive at ’Berenger’-type time-domain equations. In this respect it is observed that, although the frequency-
domain version can serve as a guideline to the time-domain one, the condition of causality is an extra condi-
tion, necessitated for the uniqueness of the time-domain coordinate-stretched problem. Other approaches have
been presented in [18,27,28] in connection with the scalar wave equation, [10,40,53] in connection with wave
propagation problems in acoustics, [3,7,11–13,16,29,35,39,41] in connection with electromagnetics, and
[10,15,26,30,31,34,38] in connection with elastodynamics.

Now, any computational implementation of perfectly matched embeddings requires their truncation by an
outer boundary on which either Dirichlet or Neumann conditions are imposed on the wavefield. Such a trun-
cation leads to the generation of spuriously reflected waves in the solution domain. To investigate the latter’s
properties on the wave phenomenon in the solution domain, we construct the time-domain Green’s function
for a configuration with arbitrary relaxation-type stretching functions along the three Cartesian coordinate
directions, truncated with a Dirichlet boundary (Fig. 1). To gain insight into the relative influence of all
the parameters and profiles involved, we provide a test case whose Green’s function solution is constructed
entirely analytically, thus concentrating on the mathematical properties of the embedding procedure. Further-
more, a 1D numerical experiment is reported where the pure space-time discretization errors in the presence of
an absorptive layer with prescribed attenuation are isolated from the ones associated with the spurious reflec-
tion properties of the truncated perfectly matched embedding.

The heuristic idea behind the procedure originates from Berenger [7], who, in a perfectly matched layer
(PML) added some non-physical components to the original field ones and extended the system of partial dif-
ferential equations accordingly (see also the survey paper [50]). A stability analysis of the initial-value problem
related to the thus extended system of equations, carried out in [1], shows that this problem is not strongly
well-posed. Concurrently to this approach, a complex frequency-domain coordinate stretching procedure

was introduced [11,13,16] (see also the review by Kozuoglu and Mittra [35], as well as the surveys in
[24,47,48]). Here, frequency-domain, non-reflecting plane-wave arguments stand at the basis of the construc-
tion of one-dimensional perfectly matched layers (PML’s) out of which three-dimensional, Cartesian, perfectly
matched embeddings are built that bound the solution domain. This procedure leaves open the questions
about the three-dimensional properties of the configuration solution domain plus embedding (in particular
near and at the intersections of the planar layers: i.e., edges and corners) as well as the uniqueness and cau-
sality properties of the solution to the differential equation that replaces the wave equation in the embedding.



Fig. 1. Bounded solution domain D surrounded by truncated Cartesian coordinate-stretched perfectly-matched embedding Er.
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Typically, the further standard procedure is to construct the relevant differential equation(s) and subse-
quently investigate the properties of their solution through numerical experiments. Our derivation proceeds dif-
ferently and is based on the three-dimensional pertaining space-time integral representation for the wavefield in
the entire configuration consisting of solution domain and unbounded embedding, and specifically on the prop-
erties of the space-time Green’s function in this configuration. The class of space-time coordinate stretching
functions that we construct is shown to yield unique and causal solutions, not only for the corresponding
unbounded embeddings with outgoing waves, but also for the computationally required truncated ones, sup-
plied with Dirichlet or Neumann type of boundary conditions. The class of wave functions under consideration
is a solution of a rather general dissipative wave equation, the coefficients in which contain relaxation functions
of the Boltzmann type [17]. To guarantee uniqueness of the relevant initial-value problem, these relaxation
functions have to meet certain causality and stability conditions [17, Section 2.2]. Since our time-domain
stretching functions are taken to satisfy conditions of a similar type, it is conjectured that our class of time-
domain stretching functions does also lead to stable systems of discretized equations, but the aspect of stability
itself in all generality remains to be investigated. (For procedures in this direction, see [6,25,49].)

Although the time convolutions in the coordinate-stretched differential equations can be handled numeri-
cally (for example, by the Newmark method [32,33]), the alternative procedure of constructing a system of
supplementing differential equations such that a consistent first-order coupled system arises, is often preferred.
For the subclass of space-time coordinate stretching functions that lead to time delay and/or absorption in the
embedding, we present such a system via the straightforward application of some rules of the unilateral time
Laplace transformation. To demonstrate the practical use of the system, a 1D numerical experiment is carried
out, in which, owing to the availability of an exact solution, the pure space-time discretization errors can be
separated from the disturbance associated with the spuriously reflected wave.

The 3D coordinate-stretched embedding is, apart from the spurious reflections due to its truncation, exactly
perfectly matched for 3-rectangles only. As is shown, this is a consequence of the property that in rectangular
coordinates the Green’s function only depends on the differences of the coordinates of source point and obser-
vation point. In other coordinate systems, for example, cylindrical and spherical ones, a coordinate stretching
procedure can, since the Green’s function in those systems has no such simple structure, not lead to a perfectly
matched embedding, and one must rely on approximate procedures. Since through the Green’s function pro-
cedure a guaranteed attenuation of the, truncation generated, spuriously reflected waves can be established,
one can, in all practical applications, restrict the actual ‘solution domain’ (Fig. 1) to the minimum required
by the problem at hand.

2. Description of the wave motion in the configuration

We consider transient scalar wavefields that are to be computationally modeled in a bounded subdomain D
(the solution domain) of three-dimensional Euclidean space R3. The closed boundary surface of D is oD. The
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complement of D [ oD in R3 is denoted as the embedding D1. Position in the configuration is specified by the
coordinates {x,y,z} with respect to an orthogonal, Cartesian reference frame with the origin O and the three
mutually perpendicular base vectors {ix, iy, iz}, each of which is of unit length. In the indicated order, the base
vectors form a right-handed system. Whenever appropriate, the position is also specified by the position vector
r = xix + yiy + ziz. The time coordinate is t. Partial differentiation is denoted by o, supplied with the relevant
subscript.

The wave motion is characterized by the scalar wave function u(r, t) = u(x,y,z, t). In conformity with our
procedure of constructing a perfectly matched embedding, this wave function is, in the solution domain, taken
to satisfy a scalar wave equation of the type (dissipative wave equation)
Du ¼def
ox½lx �

ðtÞ
oxu� þ oy ½ly �

ðtÞ
oyu� þ oz½lz �

ðtÞ
ozu� � c�2j �

ðtÞ
o2

t u ¼ �Qi for r 2 D; t 2 R; ð1Þ
where �
ðtÞ

denotes time convolution, lx,y,z(r, t) and j(r, t) are normalized, passive, causal relaxation functions of
the Boltzmann type, c is the wavespeed of the embedding (a positive constant) and Qi(r, t) is the volume source
density of the exciting sources. It is assumed that suppðQiÞ � D, in which domain Qi is a piecewise continuous
function of r and t. As to the coefficients lx,y,z(r, t) and j(r, t) occurring in the differential operator D, we as-
sume that they are piecewise continuous functions of r and, apart from a Dirac delta distribution term oper-
ative at t = 0 (yielding the instantaneous response), continuous functions of t that vanish for t < 0 (causality
requirement). They are representative for the constitutive properties of the medium in which the wave prop-
agates and may show finite jumps across a finite number of surfaces on which the unit vector m along the nor-
mal is piecewise continuous. Across these surfaces of jump discontinuity in medium properties, the wave
function u and the linear combination mx½lx �

ðtÞ
oxu� þ my ½ly �

ðtÞ
oyu� þ mz½lz �

ðtÞ
ozu� of its first-order derivatives are

to be continuous. Eq. (1) arises, for example, as the scalar wave equation satisfied by the acoustic pressure
of an acoustic wavefield in a lossy fluid with anisotropic inertia properties [19, pp. 34–35].

In the embedding of the solution domain, the wave function is taken to satisfy the sourcefree three-dimen-
sional scalar wave equation
D1u ¼def
o2

xuþ o2
y uþ o2

z u� c�2o2
t u ¼ 0 for r 2 D1; t 2 R: ð2Þ
i.e., in the embedding all relaxation functions reduce to d(t).
The problem posed by the differential equations (1) and (2), the interface continuity conditions, the initial

conditions u(r, 0) = 0 and otu(r, 0) = 0 for r 2 R3, together with the condition that, in the embedding, the wave
motion consists of outgoing waves only, has a solution that exists and is unique (see [20,21]).

To express the behavior of the wave function in terms of the Green’s function associated with Eq. (2), we
introduce the volume density Qs(r, t) of contrast sources with respect to the embedding via
�Qs ¼def
D1u� Du for r 2 R3; t 2 R: ð3Þ
Note that Qs is uniquely determined and that its support is obviously the bounded subdomain of D where the
relaxation functions in D differ from their values in the embedding. Upon combining Eqs. (1) and (3) we ob-
tain the equation
D1u ¼ �Qi � Qs for r 2 R3; t 2 R: ð4Þ

This equation implies that u is related to the right-hand side via
uðr; tÞ ¼
Z
D

Gðr; r0; tÞ �
ðtÞ
½Qiðr0; tÞ þ Qsðr0; tÞ�dV ðr0Þ for all r 2 R3; t 2 R; ð5Þ
in which
Gðr; r0; tÞ ¼ dðt � R=cÞ
4pR

for R 6¼ 0; ð6Þ
with
R ¼ ½ðx� x0Þ2 þ ðy � y0Þ2 þ ðz� z0Þ2�1=2 P 0; ð7Þ
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is the causal free-space Green’s function associated with the differential operator D1. Eqs. (5)–(7) will serve as
the basis for our construction of a general class of absorptive and dispersive, perfectly matched, i.e. reflection-
less, computational counterparts of the embedding D1.

The relevant construction takes place via the time Laplace transformation of the causal time functions
involved. Let t = 0 be the instant at which the activating sources start to act, then the generated wavefield van-
ishes everywhere in space for t < 0 and its (unilateral) time Laplace transform is given by
ûðr; sÞ ¼
Z 1

t¼0

expð�stÞuðr; tÞdt for r 2 R3: ð8Þ
Restricting ourselves to the physically and computationally important case of bounded wavefield values, the
right-hand side of Eq. (8) exists in the right half fs 2 C;ReðsÞ > 0g of the complex s-plane, where it is an ana-
lytic function of the complex variable s. For the rest of the analysis we take s to be on the positive real s-axis
and rely for the unique correspondence between ûðr; sÞ and u(r, t) on Lerch’s uniqueness theorem. This theo-
rem states that to the sequence fûðr; snÞ; sn ¼ s0 þ nh; s0 > 0; h > 0; n ¼ 0; 1; 2; . . .g there corresponds only one
u(r, t) that vanishes for t < 0 [52]. Since under the transformation, together with zero-value initial conditions,
ôt ¼ s; û satisfies the equation
bD1û ¼def

o
2
x ûþ o

2
y ûþ o

2
z û� ðs2=c2Þû ¼ �bQi � bQs for r 2 R3; ð9Þ
while the representation (5) transforms into
ûðr; sÞ ¼
Z
D

bGðr; r0; sÞ½bQiðr0; sÞ þ bQsðr0; sÞ�dV ðr0Þ for all r 2 R3; ð10Þ
with
bGðr; r0; sÞ ¼ expð�sR=cÞ
4pR

for R 6¼ 0: ð11Þ
These equations form the starting point of our further analysis.

3. The space-time Cartesian coordinate stretching procedure

Guided by the notion that relaxation (i.e., absorption and dispersion) in a linear, passive, time-invariant
medium can mathematically be modeled via causal relaxation functions whose time Laplace transform is
analytic in the right half of the complex s-plane, while being real-valued and positive on the positive real
s-axis, we introduce three such functions, v̂xðx; sÞ; v̂yðy; sÞ and v̂zðz; sÞ, each of which satisfies these condi-
tions. Furthermore, v̂xðx; sÞ is assumed to be piecewise continuous in x; v̂yðy; sÞ piecewise continuous in y,
and v̂zðz; sÞ piecewise continuous in z. The time-domain counterparts of these functions are to play the role
of time-domain Cartesian coordinate stretching functions. Next, we investigate the properties of the
function
ûrðr; sÞ ¼
Z
D

bGrðr; r0; sÞ½bQiðr0; sÞ þ bQsðr0; sÞ�dV ðr0Þ for all r 2 R3; ð12Þ
where
bGrðr; r0; sÞ ¼ expð�sR̂r=cÞ
4pbRr

for bRr 6¼ 0; ð13Þ
in which
bRr ¼ ðbX 2 þ bY 2 þ bZ 2Þ1=2 P 0; ð14Þ

with the three s-domain stretched Cartesian coordinates
bX ¼ Z x

x0
v̂xðn; sÞdn; bY ¼ Z y

y0
v̂yðg; sÞdg; bZ ¼ Z z

z0
v̂zðf; sÞdf: ð15Þ



A.T. de Hoop et al. / Journal of Computational Physics 221 (2007) 88–105 93
Obviously, in each 3-rectangle of space that contains both r 0 = {x 0,y 0,z 0} and r = {x,y,z} and in the interior of
which v̂xðx; sÞ ¼ 1; v̂yðy; sÞ ¼ 1 and v̂zðz; sÞ ¼ 1, we have bRr ¼ R. Since, further, bQi and bQs, are fully determined
by the original problem stated in Section 2, we then have in such a 3-rectangle ûr ¼ û, i.e., û is reproduced
exactly, irrespective of how the values of v̂xðx; sÞ, v̂yðy; sÞ and v̂zðz; sÞ are, within the specified class, chosen out-
side that 3-rectangle. This opens the possibility to select the values of the coordinate stretching functions such
that, outside the relevant 3-rectangle, ûr as given by Eq. (12) is either strongly attenuated or strongly time-de-
layed, or both. These properties can then be exploited to truncate the domain in which the differential equation
satisfied by the expression (12) is solved computationally. For this to be of practical use, we need the differ-
ential equation satisfied by ûr or, which is equivalent, the differential equation satisfied by bGr.

From the standard theory of the scalar wave equation it is known that bGr is the bounded solution asbRr !1 of the differential equation
o2bX bGr þ o2bY bGr þ o2bZ bGr � ðs2=c2ÞbGr ¼ �dðbX ; bY ; bZÞ: ð16Þ
Note that, due to the fact that s, and also the coordinate stretching functions, are real and positive, no diffi-
culty in the interpretation of either the spatial derivatives or the Dirac delta distribution arises. Observing that
obX ¼ v̂xðx; sÞ�1
ox; obY ¼ v̂yðy; sÞ�1

oy ; obZ ¼ v̂zðz; sÞ�1
oz ð17Þ
and
dðbX ; bY ; bZÞ ¼ ½v̂xðx; sÞv̂yðy; sÞv̂zðz; sÞ��1dðx� x0; y � y 0; z� z0Þ; ð18Þ

Eq. (16) leads to
v̂�1
x oxðv̂�1

x ox
bGrÞ þ v̂�1

y oyðv̂�1
y oy

bGrÞ þ v̂�1
z ozðv̂�1

z oz
bGrÞ � ðs2=c2ÞbGr

¼ �½v̂xv̂y v̂z��1dðx� x0; y � y0; z� z0Þ: ð19Þ
In those domains where v̂x ¼ 1; v̂y ¼ 1; v̂z ¼ 1, this equation reduces to
o2
x
bG þ o2

y
bG þ o2

z
bG � ðs2=c2ÞbG ¼ �dðx� x0; y � y0; z� z0Þ; ð20Þ
which has Eq. (11) as its solution, subject to the property of boundedness as R!1 in view of the condition of
causality in the time domain. The right-hand side of Eq. (13) can be regarded as a coordinate stretched ‘spher-

ical’ wave.
After multiplication of the left- and the right-hand sides by v̂xv̂y v̂z, the application of some standard rules of

the unilateral Laplace transformation leads to the time-domain equivalent of Eq. (19):
D1;rGr ¼def
vyðy; tÞ �

ðtÞ
vzðz; tÞ �

ðtÞ
oxðv�1

x ðx; tÞ �
ðtÞ

oxG
rÞ þ vzðz; tÞ �

ðtÞ
vxðx; tÞ �

ðtÞ
oyðv�1

y ðy; tÞ �
ðtÞ

oyG
rÞ

þ vxðx; tÞ �
ðtÞ

vyðy; tÞ �
ðtÞ

ozðv�1
z ðz; tÞ �

ðtÞ
ozG

rÞ � c�2o2
t ðvxðx; tÞ �

ðtÞ
vyðy; tÞ �

ðtÞ
vzðz; tÞ �

ðtÞ
GrÞ

¼ �dðx� x0; y � y0; z� z0; tÞ; ð21Þ
where v�1
x ðx; tÞ �

ðtÞ
vxðx; tÞ ¼ dðtÞ for all x, with similar relations for v�1

y ðy; tÞ and v�1
z ðz; tÞ. Since for r 6¼ r 0 the

derivatives of any order of bGr with respect to bX ; bY and bZ exist, v�1
x ðx; tÞ �

ðtÞ
oxG

r is piecewise continuously dif-

ferentiable with respect to x, v�1
y ðy; tÞ �

ðtÞ
oyG

r is piecewise continuously differentiable with respect to y and

v�1
z ðz; tÞ �

ðtÞ
ozG

r is piecewise continuously differentiable with respect to z. This has the consequence that any
spatial stencil that can handle the discretization of D in Eq. (1), can also handle the discretization of the dif-
ferential operator D1;r, without having to be on the further alert for jumps in the quantities. Using the prop-
erties of Gr as they follow from Eqs. (21) and (12) leads to
D1;rur ¼ �Qi � Qs for r 2 R3: ð22Þ

The domain in which the time-domain coordinate stretching functions differ from their values in the actual
embedding will be denoted as the Cartesian coordinate stretched perfectly matched embedding (CartPME,
for short) Er:
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Er ¼ supp½dðtÞ � vxðx; tÞ� [ supp½dðtÞ � vyðy; tÞ� [ supp½dðtÞ � vzðz; tÞ�: ð23Þ
For Er to act as an embedding of D (i.e., leaving the differential equation in D as it was), we must have
Er \D ¼ ;.

Starting from the pertaining frequency-domain analysis, the role of time-convolution Cartesian coordinate
stretching functions in the construction of PML’s has also been discussed by Roden and Gedney [44]. Fre-
quency-domain stretching functions associated with a complex Riemannian metric more general than the
Cartesian one, have mathematically been discussed in [36,37].

4. The time-domain Cartesian coordinate-stretched dissipative wave equation

Based on the previous analysis, the time-domain, Cartesian coordinate-stretched dissipative wave operator
Dr becomes
Drur ¼def
oxðlr

x �
ðtÞ

oxurÞ þ oyðlr
y �
ðtÞ

oyurÞ þ ozðlr
z �
ðtÞ

ozurÞ � c�2jr �
ðtÞ

o2
t ur; ð24Þ
in which
lr
x ¼

lxðr; tÞ for r 2 D;

v�1
x ðx; tÞ �

ðtÞ
vyðy; tÞ �

ðtÞ
vzðz; tÞ for r 2 Er;

(
ð25Þ

lr
y ¼

lyðr; tÞ for r 2 D;

v�1
y ðy; tÞ �

ðtÞ
vzðz; tÞ �

ðtÞ
vxðx; tÞ for r 2 Er;

(
ð26Þ

lr
z ¼

lzðr; tÞ for r 2 D;

v�1
z ðz; tÞ �

ðtÞ
vxðx; tÞ �

ðtÞ
vyðy; tÞ for r 2 Er;

(
ð27Þ

jr ¼
jðr; tÞ for r 2 D;

vxðx; tÞ �
ðtÞ

vyðy; tÞ �
ðtÞ

vzðz; tÞ for r 2 Er:

(
ð28Þ
By combining Eqs. (4) and (22) with the definitions (25)–(28), it follows that
Drur ¼ �Qi for r 2 R3 ð29Þ
is the differential equation that reproduces the differential equation to be solved in the solution domain D,
while providing a perfectly matched outgoing wave propagation in the coordinate-stretched embedding Er.
Furthermore, we have ur = u for r 2 D as it follows from Eqs. (5) and (12).

For practical use, a discretized version of Eq. (29) can only be employed in some subdomain D [ Er of R3,
where Er is some truncated version of Er. By the nature of the Cartesian coordinate stretching procedure, the
total domain of computation is most advantageously taken to be a 3-rectangle with edges parallel to the axes
of the chosen Cartesian reference frame, while having the solution domain D as a proper subset (Fig. 1). On
the boundary surface oEr of Er, explicit boundary conditions of either the Dirichlet or the Neumann type can
then be invoked to generate the solution to the initial-/boundary-value problem associated with the equation
Drur ¼ �Qi for r 2 D [ Er: ð30Þ
The existence of solutions to this equation directly follows from our construction of the differential operator
Dr. The uniqueness of the relevant initial-/boundary-value problem remains, however, to be investigated.

5. Uniqueness of the coordinate-stretched initial-/boundary-value problem in a bounded domain

In relation to the uniqueness of the solution of the initial-/boundary-value problem associated with Eq. (30)
in a bounded subdomain Dr of R3, it is observed that in the theory of partial differential equations no direct
time-domain uniqueness proofs are known to exist in case their terms contain time convolutions with the
unknown functions and/or their derivatives, even if the (physical) restrictions of causality are laid upon them.
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When expediting to the frequency domain, as is, for example, done in [46], the imposition on the constitutive
coefficients of imaginary parts of the proper sign in addition to their positive real parts, yields indeed a suf-
ficient condition for uniqueness for each frequency constituent separately, but even the imposition of the Kra-
mers–Kronig relations between real and imaginary parts does not guarantee the (required) analyticity of the
function involved in the right half Re(s) > 0 of the complex s-plane [35]. An expedition into the time Laplace-
transform domain, where causality has a one-to-one relationship with the analyticity properties of the trans-
formed functions and Lerch’s uniqueness theorem, seems at present the only tool to formulate necessary and
sufficient conditions (see, [21] for elastodynamic and [20] for electromagnetic wave propagation and scattering
problems in the presence of media with relaxation). For that reason such an approach is also followed here,
upon subjecting the coordinate stretching functions, too, to the condition of causality.

We assume that lr
x ; lr

y ; lr
z and jr are piecewise continuous functions of r, with possible finite jump discon-

tinuities at a finite number of time-independent surfaces with a piecewise continuously turning normal, as well
as piecewise continuous functions of time. An essential feature is furthermore that their Laplace transformed
counterparts l̂r

x ; l̂r
y ; l̂r

z and ĵr are analytic in the right half fs 2 C;ReðsÞ > 0g of the complex s-plane and real
and positive for real, positive values of s, a subset of which is needed for the one-to-one correspondence
between the time functions and their Laplace transforms. Across the surfaces of discontinuity in the coeffi-

cients, the coordinate-stretched wavefunction ur and its coordinate-stretched normal derivative m � ð$r �
ðtÞ

urÞ,
where $r ¼ lr

x ixox þ lr
y iyoy þ lr

z izoz and m is the unit vector along the normal to the surfaces, are to be contin-
uous. Furthermore, the coordinate-stretched wavefunction is assumed to satisfy the initial conditions
ur(r, 0) = 0 and otu

r(r, 0) = 0 for all r 2 Dr. Under these conditions, o2
t ur transforms into s2ûr. As to the

boundary conditions on oDr we assume that oDr ¼ oDr
I [ oDr

II, where on oDr
I the value of ur is prescribed

(Dirichlet condition), while on oDr
II the value of m � ðrr �

ðtÞ
urÞ (Neumann condition) is prescribed.

To prove uniqueness for the thus formulated initial-/boundary-value problem, we consider the Laplace-
transformed counterpart of Eq. (29), i.e.,
bDrûr ¼ �bQi for r 2 Dr; ð31Þ

in which
bDrûr ¼ oxðl̂r

xoxûrÞ þ oyðl̂r
y oy ûrÞ þ ozðl̂r

z ozðûrÞ � ðs=cÞ�2ĵrûr: ð32Þ
The spatial continuity conditions on the coefficients in the differential operator and those on the wavefuntion
and its coordinate-stretched normal derivative carry over the time Laplace-transformed domain.

Let, now Dur denote the difference between two possible solutions of the initial-/boundary-value problem
under consideration, with the same prescribed source distributions in Dr and the same boundary conditions
on oDr

I and oDr
II. Multiplying through in
bDrDûr ¼ 0 ð33Þ
by Dûr, integrating over Dr, manipulating with the derivatives, applying Gauss’ divergence theorem and
substituting the boundary conditions Dûr ¼ 0 (Dirichlet) on oDr

I and m � ðb$rDûrÞ ¼ 0 (Neumann) on oDr
II,

we arrive at
Z
Dr
½l̂r

x ðoxDûrÞ2 þ l̂r
y ðoyDûrÞ2 þ l̂r

z ðozDûrÞ2 þ ðs=cÞ2jrðDûrÞ2�dV ¼ 0: ð34Þ
For any Dûr 6� 0 throughout Dr, all quantities being real-valued, the left-hand side of this equation is positive,
which contradicts the value of its right-hand side. Consequently, Dûr � 0 throughout Dr, which proves
uniqueness of ûr. On account of Lerch’s uniqueness theorem of the Laplace transformation, then Dur ” 0
throughout Dr, which completes the uniqueness proof for the time domain.

6. Scattering or contrast source formulation for a given incident wavefield

In those cases where the exciting sources of the wavefield are located in the embedding D1 at a large dis-
tance away from the contrasting regions in the solution domain D, it is impractical to choose D to encompass
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these sources, since it would unnecessarily increase the number of elements of discretization in D. Since both
the Green’s function of the embedding D1 and the generating volume source densities are known, we can cal-
culate the incident wavefield ui(r, t) via (cf. Eq. (5))
uiðr; tÞ ¼
Z

suppðQiÞ
Gðr; r0; tÞ �

ðtÞ
Qiðr0; tÞdV ðr0Þ for all r 2 R3; t 2 R; ð35Þ
with G given by Eqs. (6) and (7). Next, we introduce the scattered wavefield us = us(r, t) as
us ¼def u� ui for all r 2 R3; t 2 R: ð36Þ

Using the definitions of the operators D and D1 as given in Eqs. (1) and (2), the scattered wavefield is found to
satisfy the differential equation
Dus ¼ ðD1 � DÞui for all r 2 R3; t 2 R; ð37Þ

in which the support of the right-hand side is the contrasting subdomain of D, i.e., the support of the contrast

sources. Since ui can be considered as known, the computational problem now amounts to solving Eq. (37) for
us with the technique explained in Sections 3–5, after which the total wavefield follows as u = ui + us. A lim-
iting case arises when the exciting sources recede to infinity, in which case the incident wavefield reduces to a
plane wave.
7. The sub-class of Cartesian coordinate-stretching functions invoking excess time delay and excess absorption

So far, the coordinate stretching functions that we have introduced are quite general as far as their depen-
dence on space and time is concerned. In this section we more specifically demonstrate how the two major
ingredients in the operation of perfectly matched embeddings, viz. time delay and absorption come into play.
These two features show up in stretching profiles of the form
vxðx; tÞ ¼ ½1þ NxðxÞ�dðtÞ þ rxðxÞHðtÞ; ð38Þ

in which Nx(x) P �1, the excess time-delay profile, and rx(x) P 0, the excess absorption profile, are piecewise
continuous functions of x, and H(t) denotes the Heaviside unit step function. In view of the condition
vx(x, t) 6¼ 0 for t P 0, 1 + Nx(x) and rx(x) may not vanish simultaneously. Similar expressions apply to vy(y, t)
and vz(z, t). The time-delay and absorption properties of these profiles as they manifest themselves in the solu-
tion to the coordinate-stretched wave equation, follow from substituting
~vxðx; sÞ ¼ ½1þ NxðxÞ� þ s�1rxðxÞ; ð39Þ

and similar expressions for v̂yðy; sÞ and v̂zðz; sÞ, in Eqs. (13)–(15). (For the equivalent frequency-domain con-
struction, see [44].) This leads to
bGr ¼ s
4pRd

expf�T d ½ðsþ CÞ2 þ X2�1=2g
½ðsþ CÞ2 þ X2�1=2

for Rd 6¼ 0; ð40Þ
with
X d ¼
Z x

x0
½1þ NxðnÞ�dn; Y d ¼

Z y

y0
½1þ NyðgÞ�dg; Zd ¼

Z z

z0
½1þ NzðfÞ�df;

X a ¼
Z x

x0
rxðnÞdn; Y a ¼

Z y

y0
ryðgÞdg; Za ¼

Z z

z0
rzðfÞdf; ð41Þ
and
Rd ¼ ðX 2
d þ Y 2

d þ Z2
dÞ

1=2 P 0; Ra ¼ ðX 2
a þ Y 2

a þ Z2
aÞ

1=2 P 0; T d ¼ Rd=c;

C ¼ ðX dX a þ Y dY a þ ZdZaÞ=R2
d ; X ¼ ðR2

a=R2
d � C2Þ1=2 P 0: ð42Þ
The corresponding time-domain result is [4]
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Gr ¼ ot
expð�CtÞ

4pRd
J 0½Xðt2 � T 2

dÞ
1=2�Hðt � T dÞ

� �
for Rd > 0; ð43Þ
where J0 is the Bessel function of the first kind and order zero. From this it is clear that Td is the travel time of
the coordinate-stretched wave function from the source point to the point of observation, C is the attenuation
that the wave undergoes during its passage, while X is the angular frequency of oscillation induced by the
coordinate stretching procedure (C and X both vanish for vanishing excess absorption).

In [35] it is argued that the second term in Eq. (39) presents a difficulty with respect to the Kramers–Kron-
ing causality relations. The standard derivation of these relations assumes the imaginary s-axis to be free from
singularities in the s-domain relaxation functions. If, however, the derivation is adapted to the presence of
such singularities (in this case a simple pole at s = 0), the modified expressions are indeed representative
(although not decisive) for causality. In fact, one can even go so far as to completely annihilate the wave prop-
agation term in the CartPME by taking Nx(x) = �1, upon which a purely diffusive CartPME is left (see [5,46]).
In this case, one has to take care to choose the time stepping in accordance with the resulting diffusive nature,
rather than with wave propagation.

8. The point-source solution in the truncated coordinate-stretched configuration

The point-source solution in the truncated coordinate-stretched configuration provides an adequate tool to
analyze the performance of the method. In the present section the structure of this solution is investigated for
the case where the coordinate stretching procedure is carried out via the general relaxation procedure dis-
cussed in Section 3. Results for a specific case will be presented in Section 9.

The domain of computation is taken to be the 3-rectangle D [ Er (Fig. 1). On the boundary oEr of Er we
invoke the Dirichlet boundary condition ur = 0. In D, a point source located at {x = x0,y = y0,z = z0} and
source signature f = f(t), with f(t) = 0 for t < 0, excites the configuration. The point-source solution in
D [ Er is constructed with the aid of the standard method of images. Let D [ Er be given by {0 < x < ax,
0 < y < ay, 0 < z < az}, then we first continue this domain into the 3-rectangle {�ax < x < ax,�ay < y

< ay,�az < z < az} in which the constitutive coefficients are the mirror images of the ones in D [ Er, such that
the planes {x = 0}, {y = 0} and {z = 0} are the planes of reflection symmetry. Next, we repeat the thus con-
structed pattern in {�ax < x < ax,�ay < y < ay,�az < z < az} periodically with periods 2ax, 2ay and 2az in the
x-, y- and z-directions, respectively. The point-source solution in the thus continued configuration we denote
as Gr(x,y,z;x0,y0,z0; t). Then, the point-source solution in D [ Er satisfying Dirichlet boundary conditions on
oEr is obtained as
ur ¼ f ðtÞ �
ðtÞ X

nx;ny ;nz

ð�1Þnxþnyþnz Gr
0ðx; y; z; x0 þ 2nxax; y0 þ 2nyay ; z0 þ 2nzaz; tÞ; ð44Þ
in which
Gr
0ðx; y; z; x0; y0; z0; tÞ ¼ Grðx; y; z; x0; y0; z0; tÞ � Grðx; y; z; x0; y0;�z0; tÞ � Grðx; y; z; x0;�y0; z0; tÞ

þ Grðx; y; z; x0;�y0;�z0; tÞ � Grðx; y; z;�x0; y0; z0; tÞ þ Grðx; y; z;�x0; y0;�z0; tÞ
þ Grðx; y; z;�x0;�y0; z0; tÞ � Grðx; y; z;�x0;�y0;�z0; tÞ; ð45Þ
all summations over the integers nx, ny and nz running from �1 to1. For the solution domain D we take the
3-rectangle fd 0x < x < ax � d 00x ; d

0
y < y < ax � d 00y ; d

0
z < z < az � d 00z g, where fd 0x; . . . ; d 00z g > f0; . . . ; 0g specify the

thicknesses of the layers cut out of the 3D perfectly matched, Cartesian embedding in accordance with its com-
putational truncation.

Each of the terms in Eq. (44), except the one corresponding to nx = 0, ny = 0, nz = 0, gives rise to a spuri-
ously reflected wavefield in the solution domain, with a time delay and/or an attenuation determined by the
coordinate stretching relaxation functions it has encountered on its path of propagation in the embedding.
Obviously, the most disturbing term is the image source closest to the source in the solution domain. Its decay
across the pertinent part of the embedding can be used as a measure for the tolerance on the disturbing
reflected waves in the solution domain. To illustrate what can be expected, we discuss in Section 9 a test case
where all the relevant quantities can be evaluated analytically.



98 A.T. de Hoop et al. / Journal of Computational Physics 221 (2007) 88–105
9. A test case with an analytical solution

For our test case we introduce in the perfectly matched embedding Er ‘left’ and ‘right’ excess time-delay and
excess absorptive profiles, where the ‘left’ excess time-delay profiles are of the type
Fig. 2.
m = 1.0
N x;LðxÞ ¼ AN
x;L

x0 � x
x0 � xL

� �mN
x;L

exp �bN
x;L

x� xL

x0 � xL

� �
; 0

( )
for fx < x0; x > x0g ð46Þ
and the ‘left’ excess absorptive profile of the type
rx;LðxÞ ¼ Ar
x;L

x0 � x
x0 � xL

� �mr
x;L

exp �br
x;L

x� xL

x0 � xL

� �
; 0

( )
for fx < x0; x > x0g; ð47Þ
in which AN
x;L; mN

x;L; bN
x;L; Ar

x;L; mr
x;L; br

x;L and are real-valued, non-negative parameters, x0 is the x-coordinate
where the coordinate stretching into the half-space {x < x0} starts and xL < x0 is the x-coordinate where
the profile reaches the value AN ;r

x;L . Similar expressions are taken for the profiles Ny;L(y), Nz;L(z), ry;L(y) and
rz;L(z) and for the corresponding ’right’ profiles. At the reference plane {x = xL}, these profiles have the value
AN,r, while they are continuous across the plane {x = x0} where the CartPME starts. (Note that this continu-
ity seems to be preferred in computational implementations, although our analysis does not require it.) The
value of mN,r determines the behavior near {x = x0}, the value of bN,r determines the behavior as x!�1.
Fig. 2 illustrates this. Fig. 3(a)–(f) visualize how the propagation of the disturbance into the CartPME with
excess time delay is slowed down and the propagation into an absorptive CartPME is attenuated, while illus-
trating that the corner yields no reflection at all. Fig. 3(d)–(f) illustrate the propagation into a CartPME with
both time delay and absorption. All the different parameters in Eqs. (46) and (47) are at one’s disposal to con-
struct 3D perfectly matched Cartesian embeddings with a guaranteed time delay and/or attenuation, in accor-
dance with a prescribed tolerance in the spuriously reflected wave. As such, the present special case can serve
useful benchmark purposes in purely numerical implementations.

10. The computational system of differential equations

For the sub-class of coordinate stretching functions introduced in Section 7, a system of first-order space-
time partial differential equations can be constructed that meets the requirement [24,48] that it can computa-
tionally be discretized in the same manner as applicable to standard wave equations in the solution domain, if
necessary supplemented with a system of auxiliary ordinary differential equations in the time coordinate. Be it
in a more ad-hoc manner, this was also the idea pursued in the pioneering split-field equations approach of
Berenger [7–9]. The guiding principle for the construction of such a system can most easily inferred from
Normalized Left excess time-delay and absorption profiles (m: A = 1.0, m = 0.5, b = 1.0; n: A = 1.0, m = 2.0, b = 4.0; w: A = 1.0,
, b = 2.0).



Fig. 3. (a) CartPME excess time-delay profile in x direction ðAN
x ¼ 8:0; mN

x ¼ 1:0; bN
x ¼ 1:0;Ar

x ¼ 0Þ; (b) Wavefronts at successive instants;
(c) CartPME absorptive profile in y-direction ðAr

y ¼ 4:0; mr
y ¼ 1:0;br

y ¼ 1:0; AN
y ¼ 0Þ; (d) Predominantly time-delaying CartPME excess

profile in x-direction ðj : AN
x ¼ 16:0; mN

x ¼ 1:0;bN
x ¼ 1:0;N : Ar

x ¼ 2:0; mr
x ¼ 1:0; br

x ¼ 1:0Þ; (e) Wavefronts at successive instants; (f)
Predominantly absorptive CartPME excess profile in y-direction ðN : Ar

y ¼ 16:0; mr
y ¼ 1:0;br

y ¼ 1:0; j : AN
y ¼ 2:0; mN

y ¼ 1:0;bN
y ¼ 1:0Þ.
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the time Laplace transform-domain coordinate-stretched wave equation in r 2 D [ Er (the sources being pres-
ent in D). On account of Eq. (19) we have
v̂�1
x oxðv̂�1

x oxûrÞ þ v̂�1
y oyðv̂�1

y oy ûrÞ þ v̂�1
z ozðv̂�1

z ozûrÞ � ðs2=c2Þûr

¼ �ðv̂xv̂y v̂zÞ�1½bQ iðr; sÞ þ bQsðr; sÞ� for r 2 D [ Er: ð48Þ
Upon multiplying through by v̂xðx; sÞv̂yðy; sÞv̂zðz; sÞ and introducing the computational unknown
ceU ðr; sÞ ¼ v̂xðx; sÞv̂yðy; sÞv̂zðz; sÞûrðr; sÞ; ð49Þ

we obtain
ox
1

v̂x
ox

1

v̂x

ceU� �� �
þ oy

1

v̂y
oy

1

v̂y

ceU� �� �
þ oz

1

v̂z
oz

1

v̂z

ceU� �� �
� ðs2=c2ÞceU

¼ �½bQiðr; sÞ þ bQsðr; sÞ� for r 2 D [ Er: ð50Þ
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A coupled first-order system of differential equations equivalent to (50) is
ox
beV x þ oy

beV y þ oz
beV z � c�1ot

eU ¼ � c
s
½bQiðr; sÞ þ bQsðr; sÞ�; ð51Þ

ox
ceW x �

s
c
v̂x
beV x ¼ 0; ð52Þ

oy
ceW y �

s
c
v̂y
beV y ¼ 0; ð53Þ

oz
ceW z �

s
c
v̂z
beV z ¼ 0; ð54Þ
with the auxiliary equations
sceU � sv̂x
ceW x ¼ 0; ð55Þ

sceU � sv̂y
ceW y ¼ 0; ð56Þ

sceU � sv̂z
ceW z ¼ 0: ð57Þ
For profiles of the type (39) we have
sv̂xðx; sÞ ¼ s½1þ N xðxÞ� þ rxðxÞ; ð58Þ

with similar expressions for v̂yðy; sÞ and v̂zðz; sÞ. Any factor of the type (58) transforms in the time domain into
the operator
otvx �
ðtÞ
¼ ½1þ NxðxÞ�ot þ rxðxÞ; ð59Þ
with similar expressions for otvyðy; sÞ �
ðtÞ

and otvzðz; sÞ �
ðtÞ

. From Eqs. (49)–(59) a coupled first-order system of
space-time differential equations equivalent to (48) is then obtained as
ox
eV x þ oy

eV y þ oz
eV z � c�1ot

eU ¼ �co�1
t ½Qiðr; tÞ þ Qsðr; tÞ�; ð60Þ

ox
eW x � c�1otvx �

ðtÞ eV x ¼ 0; ð61Þ

oy
eW y � c�1otvy �

ðtÞ eV y ¼ 0; ð62Þ

oz
eW z � c�1otvz �

ðtÞ eV z ¼ 0; ð63Þ
with the auxiliary equations
ot
eU � otvx �

ðtÞ eW x ¼ 0; ð64Þ

ot
eU � otvy �

ðtÞ eW y ¼ 0; ð65Þ

ot
eU � otvz �

ðtÞ eW z ¼ 0; ð66Þ
in which
otvx �
ðtÞ
¼ ½1þ NxðxÞ�ot þ rxðxÞ; ð67Þ

otvy �
ðtÞ
¼ ½1þ NyðyÞ�ot þ ryðyÞ; ð68Þ

otvx �
ðtÞ
¼ ½1þ NzðzÞ�ot þ rzðzÞ ð69Þ
and
eU ðr; tÞ ¼ vxðx; tÞ �
ðtÞ

vyðy; tÞ �
ðtÞ

vzðz; tÞ �
ðtÞ

uðr; tÞ ð70Þ
that reduces to u(r, t) in the original embedding D1. Eqs. (60)–(63) can be considered to be equivalents of the
first-order coupled wave equations for acoustic waves in an anisotropic, lossy fluid [19, Section 4.5], while
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Eqs. (64)–(66) are equivalent to the constitutive relations of such a fluid with frictional-force and compress-
ibility relaxation loss behavior.
11. A 1D illustrative numerical example

Since for a number of simple CartPME profiles, an analytic solution to the problem is obtainable, it is
worthwhile to carry out a numerical experiment to isolate the relative importance of spatial and temporal dis-
cretization errors, given a prescribed ’absorption capacity’ of the CartPME. A thourough study in this respect
is the recent publication by Sjögreen and Peterson [46]. (A corresponding study for the Helmholtz equation
has been carried out in [45].) To restrict the number of parameters to play with, we consider a one-dimensional
problem associated with the lossless scalar wave equation
o2
xu� c�2o2

t u ¼ �QðtÞdðxÞ for�1 < x < ax; ax > 0 ðsolution domainÞ; ð71Þ

terminated with a 1D CartPME (i.e., a PML) of thickness dx, provided with no excess time-delay profile, i.e.,
Nx;L ¼ 0; ð72Þ

and a cubic absorption profile
rx;LðxÞ ¼ 0;Ar
x;L

x� ax

dx

� �3
( )

for f�1 < x < ax; ax 6 x 6 ax þ dxg;Ar
x;L > 0; dx > 0: ð73Þ
A Dirichlet boundary condition is invoked at x = ax + dx:
uðx; tÞ ¼ 0 for x ¼ ax þ dx: ð74Þ

The solution to the s-domain counterpart of this problem is
ûðx; sÞ ¼ bQðsÞ c
2s

exp
s
c

x
h i

� bQðsÞ c
2s

exp � s
c

Z 2ðaxþdxÞ

n¼x
½1þ NðnÞ�dn� 1

c

Z 2ðaxþdxÞ

n¼x
rðnÞdn

� �
for �1 < x < 0;

ð75Þ

ûðx; sÞ ¼ bQðsÞ c
2s

exp � s
c

Z x

n¼0

½1þ NðnÞ�dn� 1

c

Z x

n¼0

rðnÞdn

� �
� bQðsÞ c

2s
exp � s

c

Z 2ðaxþdxÞ

n¼x
½1þ NðnÞ�dn� 1

c

Z 2ðaxþdxÞ

n¼x
rðnÞdn

� �
for 0 < x < ax þ dx: ð76Þ
This leads to the time-domain expressions
uðx; tÞ ¼ c
2

o
�1
t Q t þ x

c

� �
� c

2
exp � 1

c

Z 2ðaxþdxÞ

n¼x
rðnÞdn

� �
o
�1
t Q t � 1

c

Z 2ðaxþdxÞ

n¼x
½1þ NðnÞ�dn

� �
for �1 < x < 0;

ð77Þ

uðx; tÞ ¼ c
2

exp � 1

c

Z x

n¼0

rðnÞdn

� �
o�1

t Q t � 1

c

Z x

n¼0

½1þ NðnÞ�dn

� �
� c

2
exp � 1

c

Z 2ðaxþdxÞ

n¼x
rðnÞdn

� �
o
�1
t Q t � 1

c

Z 2ðaxþdxÞ

n¼x
½1þ NðnÞ�dn

� �
for 0 < x < ax þ dx; ð78Þ
where o
�1
t denotes time integration. Results are presented for the source signature (Fig. 4a)
QðtÞ ¼ Q0

2

ctr

ð1� t=trÞ expð�t=tr þ 1ÞHðtÞ; ð79Þ
that leads to the excitation of the unipolar pulse (Fig. 4b)
uðtÞ ¼ u0ðt=trÞ expð�t=tr þ 1ÞHðtÞ; ð80Þ

of pulse rise time tr and pulse time width tw = trexp(1).
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Fig. 4. 1D CartPME configuration: (a) source signature and (b) generated wave shape.
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To extract the discretization error, the 1D equivalent of the system of Eqs. (60)–(70) (with oy = 0,oz = 0,
Wy = 0,Wz = 0,Vy = 0,Vz = 0) has been solved via a standard staggered-grid space-time discretization
scheme, the mesh sizes of which are shown in Table 1. For all curves, the time step is taken to be Dt =
tr/200. The absorption properties of the layer are expressed via the cubic power law amplitude reflection coef-
ficient q ¼ expð�Ar

x;Ldx=4Þ of the spuriously reflected wave. Fig. 5 shows a few results in their dependence on
the parameters of an absorptive CartPME without excess time delay. The indicated values of q are chosen
such that, on the scale of the figure, there remains something to be seen. In each case, the sampling of the layer
takes place at ten equidistant intervals.
Table 1
Numerical reflection factor qnum for Dt = 0.95Dx and d = NPMLDx

q = 10�1 q = 10�2 q = 10�3

NPML qnum Rel. error NPML qnum Rel. error NPML qnum Rel. error

1 2.695 · 10�1 1.695 1 7.058 · 10�2 6.058 1 2.668 · 10�1 2.658 · 102

5 1.068 · 10�1 6.829 · 10�2 5 1.303 · 10�2 3.034 · 10�1 5 2.192 · 10�3 1.192
10 1.020 · 10�1 2.035 · 10�2 10 1.099 · 10�2 9.928 · 10�2 10 1.427 · 10�3 4.273 · 10�1

15 1.010 · 10�1 9.886 · 10�3 15 1.053 · 10�2 5.339 · 10�2 15 1.284 · 10�3 2.841 · 10�1

20 1.006 · 10�1 5.984 · 10�3 20 1.035 · 10�2 3.486 · 10�2 20 1.230 · 10�3 2.300 · 10�1
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Fig. 5. Numerical results for a 1D wave reflected against a Dirichlet boundary condition truncated 1D CartPME.
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In Table 1, more refined values are given for the absolute numerical error in the wave functions as they are
computed with an FDTD-code, with time and space steps as indicated. It is observed that no difficulties arise
at late times, notwithstanding the fact that absorption is the main action of the CartPME under consideration.

12. Conclusion

A methodology is presented for constructing a class of 3D perfectly matched embeddings for the space-time
partial differential equations associated with time-domain wave motion computation. Based upon the contrast-
source formulation of the wave field problem with respect to a homogeneous embedding, the key issue in the
procedure is the construction of the relevant time-domain Green’s function in the configuration consisting of
computational solution domain, surrounded by a Cartesian coordinate stretched perfectly matched embedding.
The coordinate stretching procedure goes via time-convolutional stretching functions that preserve causality
and passivity, and therefore uniqueness of the time-domain problem. A particular subclass of stretching func-
tions is shown to lead to a combined time delay and absorption in the embedding, with parameters that are
adjustable to satisfy user-defined accuracy requirements on the solution in the solution domain, insofar these
are related to the spuriously reflected wave that is generated by the (computationally unavoidable) truncation
of the embedding and the imposition of Dirichlet or Neumann boundary conditions on the pertaining walls.
Also for this subclass, the pertaining system of equivalent differential equations is given that avoids the com-
putation of the time convolutions in the original coordinate-stretched differential equation. Numerical results
are shown for a class of profiles where the spuriously reflected wave generated by a point source can be calcu-
lated analytically. The Green’s function approach in general reveals properties of the solution to the problem,
irrespective of a particular space-time discretization procedure used to solve the relevant differential equations.
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Appendix A. Quasi-static behavior

The late-time behavior of transient wave motion [2] is often brought in relation to the quasi-static behavior
of the pertaining wave equation. From the time-domain equation this behavior is to follow upon deleting the
terms that contain the partial derivatives with respect to t, while in the corresponding complex frequency
domain equations one puts the complex frequency (time Laplace transform parameter) s equal to zero. The
interrelation of these operations with late time behavior rests on the applicability of the relevant Abel theo-
rems of the unilateral time Laplace transformation [51]. The validity of the relevant procedure is, here too,
closely related to the behavior of the Green’s function. As easily follows from the procedure discussed in Sec-
tion 3, the s-domain coordinate-stretched Green’s function of the 1D wave equation with wave speed c isbGr;Iðx; x0; sÞ ¼ ðc=2sÞ exp½�ðs=cÞRr;I�, the one for the 2D wave equation is bGr;IIðr; r0; sÞ ¼ ð2pÞ�1K0½ðs=cÞRr;II�,
where K0 is the modified Bessel function of the second kind and order zero, while, as shown, the one for
the 3D wave equation is bGr;IIIðr; r0; sÞ ¼ ð4pRr;IIIÞ�1 exp½�ðs=cÞRr;III �, where Rr;I,II,III is the coordinate-
stretched 1D, 2D and 3D distance function, respectively. Only bGIII is regular at s = 0 and the reasoning
sketched above does apply. However, bGI has a simple pole at s = 0 and bGII has a logarithmic branch point
at s = 0, which singularities withstand a straightforward application of the Abel theorems. This, again, shows
that at least some properties of the solutions of coordinate-stretched wave equations are not directly evident
from the differential equations, but clearly show up in the corresponding Green’s functions.
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